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FOREWORD 

(Unclassified)   The work reported herein was done at the request 
of the Aeronautical Systems Division (ASD) (ASZD), Air Force Sys- 
tems Command (AFSC),  for North American Aviation, Inc. under 
Program Element 6340683F, System 139A. 

(Unclassified)   The results of the test presented were obtained by 
ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), 
contract operator of the Arnold Engineering Development Center (AEDC), 
AFSC, Arnold Air Force Station, Tennessee, under Contract AF40(600)- 
1200.   The test was conducted from May 2 through 10,   1967 and June 2 
through 24,   1967 under ARO Project No. PT0744, and the manuscript 
was submitted for publication on September 12,   1967. 

(Unclassified)   This report contains classified information extracted 
from North American Aviation's reports NA-66-1354 dated 3-2-67, 
Secret,  Group 3,  and report TFD-67-402 dated April 1967, Secret, 
Group 3. 

(Unclassified)   This technical report has been reviewed and is 
approved. 

t 

Richard W.  Bradley Leonard T. Glaser 
Lt Col,   USAF Colonel,   USAF 
AF Representative,  PWT •*   Director of Test 
Directorate of Test 
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ABSTRACT 

t)   Test results are presented for a study on a 0.10-scale 
model, of the North American Aviation proposed advanced manned 
strategic aircraft air vehicle.   Inlets of various geometries were 
tested at Mach numbers from 0. 60 to 2. 20 over an angle-of-attack 
range from 0. 2 to 13 deg and angles of yaw from -5. 0 to +5. 0 deg. 
Inlet performance in terms of compressor-face total-pressure re- 
covery and flow distortion is presented as a function of mass-flow 
ratio for various inlet geometries at several Mach numbers and 
model attitudes. 
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Cpt9 
 -   (Unclassified) 
number of good pressures 

Re Reynolds number per foot (Unclassified) 

TH Throat height,   in.  (Unclassified) —~ - 

T-L Throat height at which the inlet unstarts at each Mach 
number and model attitude,  in. (Unclassified) 

VG Vortex generators (Unclassified) 
XBP Position of bypass flowmetering plug measured from a 

reference point (closed position), in. (Unclassified) 

a Uncorrected angle of attack of wing chord line,  deg 
(Unclassified) 

Aa Angle-of-attack correction due to model support influence 
and tunnel flow misalignment (Unclassified) 

7ßp External bypass door position, deg (Unclassified) 

4> Uncorrected angle of yaw, deg (Unclassified) 

AI/J Angle-of-yaw correction due to model support influence 
and tunnel flow misalignment (Unclassified) 

SUBSCRIPTS 

2 Engine compressor-face location (Unclassified) 

avg Average (Unclassified) 

I Inboard (Unclassified) 

L Local conditions (Unclassified) 

max Maximum (Unclassified) 

min Minimum (Unclassified) 

O Outboard (Unclassified) 

* Free-stream conditions (Unclassified) 

DECLASSE/UNCLW55IHED 

•? f ■ ix. 



AEDCTR-67-213 

MODEL NOMENCLAQIBÖLASSIFIED / UNCLASSIFIED 

Symbol Description 

Bl Basic AMSA fuselage extending to 6 in. aft of the cowl 
leading edge (Unclassified) 

FGl Fuselage-inlet boundary-layer gutter height of 0. 53 in. 
(S^nrnt) 

FG2 Fuselage-inlet boundary-layer gutter height of 1. 03 in. 
(StoNKrt) 

11 Inlet duct: variable geometry supersonic diffuser used 
with subsonic diffuser.A (see Fig.  9) (Unclassified) 

12 Inlet duct: variable geometry supersonic diffuser used 
with subsonic diffuser D (see Fig. 9) (Unclassified) 

13 Inlet duct: variable geometry supersonic diffuser used 
with subsonic diffuser F (see Fig.  9) (Unclassified) 

14 Inlet duct: variable geometry supersonic diffuser used 
with subsonic diffuser G (see Fig.  9) (Unclassified) 

J Porous configuration for boundary-layer control bleed 
regions (see Fig,  3) (Unclassified) 

LO Inlet duct cowl: fixed cowl (Unclassified) 

LI Inlet duct cowl: variable deflection cowl (Unclassified) 

Ml Metering section for main duct: includes metering ap- 
proach section,  nozzle and variable plug.    Small nozzle: 
D: = 4. 250 in. and DQ ■ 4. 200 in. (ftaomat) 

M2 Metering section for main duct: includes metering ap- 
proach section,  nozzle,  and variable plug.    Large nozzle: 
Dj and DQ = 5. 25 in. (Soomot) 

UO Bypass: no bypass (Unclassified) 

Ul Bypass: bypass extending from MS 119 to MS 122 with 
controlled exit door (Sto^aat) 

U2 Bypass: bypass extending from MS 119 to MS 122; upper 
half of perimeter is 51 percent porous (Smmmb) 

U3 Bypass: bypass extending from MS 119 to MS 122; entire 
perimeter is 51 percent porous (ftwwwt) 

VO Vortex generator configuration: no vortex generators 
(Unclassified)' 
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V5 

V6 

V7 

Wl 

WG1 

DECLASSIFIED / UNCLASSIFIED 

Vortex generator configuration: vortex generators in- 
stalled in forward location (Unclassified) 

Vortex generator configuration: vortex generators in- 
stalled in aft location (Unclassified) 

Vortex generator configuration: vortex generators in- 
stalled in middle location (Unclassified) 

Wing: stub wing clipped outboard from the estimated 
region of wing influence (Unclassified) 

Wing-inlet boundary-layer gutter height of 0. 25 in. 
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SECTION I "■■'. ■".'. wt.,,^MW 

INTRODUCTION 

(Unclassified)   A test was conducted for North American Aviation, 
Inc.  (NAA) on a 0. 10-scale inlet model of the NAA study for a proposed 
advanced manned strategic aircraft (AMSA) air vehicle.   The test was 
conducted in the Propulsion Wind Tunnels,  Supersonic (16S) and 
Transonic (16T) of the Propulsion Wind Tunnel Facility (PWT). 

(iScLlTLl)   The purpose of the test was to provide data which will 
define the performance and operating characteristics of a mixed- 
compression fuselage-mounted inlet proposed by NAA for the AMSA 
vehicle. 

(Unclassified)   Test data presented in this report are the signifi- 
cant inlet performance characteristics of the model configurations 
tested.    All data from this test have been provided North American 
Aviation, Inc. 

SECTION II 
APPARATUS 

2.1  TEST FACILITY 

(Unclassified)   Tunnels 16T and 16S are closed-circuit, continuous 
flow tunnels which are capable of operating in the Mach number range 
from 0. 5 through 1. 6 and 1. 7 through 3. 1,  respectively.   A more com- 
plete description of their operating characteristics is presented in 
Ref.   1.    The axial location of the 0. 10-scale AMSA inlet model-'ahd 
model support system in the tunnel test sections are shown in Figs, la 
and b (Appendix I) for 16S and 16T,  respectively. 

2.2 TEST ARTICLE 

(S^w**)   The inlet model is a 0. 10-scale replica of forward 
portions of the external fuselage and internal duct lines of an NAA pro- 
posed AMSA air vehicle.   Externally, the fuselage lines are duplicated 
to a point 6 in. (model scale) aft of the cowl lip,  and wing lines are 
duplicated with a stub left-hand wing in the region of wing-inlet influence. 
The internal lines are duplicated from the inlet to the engine face station 
for the one half of the air induction system (left-hand duct).   The test 
model installed in Tunnels 16S and 16T test sections is shown in Fig.   2. 

„6CLA9S.F.E01 UMCLA88ff*0 
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(MMHt)   Trie*model is capable of remote actuation in pitch and yaw. 
The model throat height,  cowl position,  bypass plug valve position, 
bypass door position,  and inboard and outboard plug valve position are 
remotely variable.    The inlet consists of one fixed external ramp (first) 
and three movable ramps (Fig.  3) with the required linkage for actua- 
tion.   The first ramp is fixed at an angle of 5 deg with respect to the 
centerline of the air vehicle. 

(Äetw*)   The air entering the inlet passes through the variable 
geometry supersonic diffuser and the subsonic diffuser to the-two -.. 
engine simulators.    Each inlet supplies the required airflow for two 
engines.    Duct pressure recovery is measured at each engine-face 
station,  and the airflow through each is measured with a standard ASME 
nozzle and regulated with a flow control plug.    The boundary-layer con- 
trol (BLC) system consists of variable porosity walls in the supersonic 
diffuser and bleed gutters forward of the inlet.    Porous and solid plates 
on the internal surfaces of the ramps, cowl,  and upper and lower side 
plates are used for boundary-layer bleed.   The locations of the re- 
movable plates are shown in Fig.  3a.    The porosity of each bleed pat- 
tern tested is also shown in Fig.  3a.    The fuselage and wing boundary- 
layer gutters (Fig.   3b) captured the boundary-layer approaching the 
inlet, and the height could be adjusted manually.    Three bypass configu- 
rations were tested: one had a controlled exit door and two had porous 
diffusers with an exit flow control plug.   A sketch of the bypass configu- 
rations is shown in Fig. 4.   More details of the test model are contained 
in Ref.   2.    Model configurations tested are listed in Table I (Appendix II). 

2.3  INSTRUMENTATION 

(SJTJffrtP*)   The fuselage boundary-layer total-pressure profiles were 
determined from total-pressure measurements obtained from two rakes 
located 1. 667 in.  forward of the splitter leading edge (Figs.  5 and 6). 
The wing boundary-layer total-pressure profiles were also determined 
from total-pressure measurements obtained from two rakes located 
1. 63 in.  forward of the upper splitter leading edge. 

(Unclassified)   Six 5-tube engine compressor-face rakes (-Fig; "7) 
measured the total pressure for each engine from which the compressor- 
face total-pressure recovery and distortion were determined.   These 
total-pressure orifice locations were on equal areas. 

(Unclassified)   The airflow of each engine simulator was metered 
using ASME nozzles Ml and M2 with four static taps at the nozzle 
throat and four static taps upstream of the nozzle (Fig.  8). 

irfK 
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(Unclassified)   Steady-state pressure instrumentation also included 

static-pressure taps through the duct and various total-pressure probes 
within the duct (Fig.  9).   In addition, there were 12 transducers 
mounted on the model to measure transient pressures which were re- 
corded on oscillographs and magnetic tape. 

SECTION III 
PROCEDURE 

ffift~rjiit)   The tunnel flexible-nozzle contour and pressure ratio 
were set to produce the desired free-stream Mach numbers.   Figure 10 
shows the Reynolds number and free-stream total pressures as a 
function of Mach number.    The model angle-of-attack settings ranged 
from 0. 2 to +13 deg and angles of yaw ±5 deg. 

(S»ws«t)   After the tunnel free-stream total pressure and "Mach 
number were established, the model was positioned to the desired 
angle of attack and/or angle of yaw.   At each test condition,  inlet pres- 
sure data were obtained for a range of simulated engine mass flows for 
several throat heights.    The engine(s) airflow control plugs were varied 
to cover a range of airflows from either engine locked rotor or tne inlet 
buzz limit mass flow to the mass-flow ratio approaching supercritical 
inlet operation.    Buzz was determined by monitoring the output of a 
pressure transducer mounted on the hub of the engine. 

SECTION IV 

RESULTS AND DISCUSSION 

(SwLi'ut)   Test results are presented for a 0. 10-scale inlet model 
of the North American Aviation AMSA air vehicle for free-stream 
Mach numbers from 0. 6 to 2. 20.    The fuselage and wing boundary-layer 
profiles are shown for various model attitudes at M^ = 2. 20.   Inlet per- 
formance in terms of compressor-face total-pressure recovery and flow 
distortion is presented as a function of engine mass-flow ratio for various 
model configurations and model attitudes.    The engine airflow require- 
ments used are for maximum-power,  standard-day operation above the 
tropopause and were obtained from Ref.   3.    A list of the configurations 
tested is shown in Table I. 

(Unclassified) Because the inlet was in such close proximity to the 
structure housing the yaw mechanism,  as shown in Fig.  2b,  an 

£*A^# 
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investigation was conducted in 16T subsequent to the inlet test to deter- 
mine the magnitude of this influence on flow angularity and local Mach 
number at the model inlet station.   The results of this investigation are 
presented in Appendix III.   Corrections based on these results have not 
been applied in this report. 

4.1   BOUNDARY-LAYER THICKNESS IN THE INLET FLOW FIELD 

(SWPÄt)   The fuselage and wing boundary-layer thicknesses in the 
inlet flow field were determined to adjust the boundary-layer gutter- 
height dimensions for the model.   Thus, the gutter-height dimensions 
position the inlet relative to the fuselage and wing.    The initial gutter 
heights for the fuselage and wing were set at 0. 53 and 0. 25 in., respec- 
tively.    The total-pressure rakes used to measure the boundary-lay er 
thickness are shown in Figs. 5 and 6. 

(dewtt)   The measured fuselage and wing boundary -layer profiles 
are shown in Fig.   11 for three angles of yaw at angles of attack from 
0. 2 to 11. 0 deg.   The theoretical turbulent boundary-layer thickness 
for a flat plate is also shown as a dashed line. 

(SewMi)   The measured fuselage boundary-layer thickness agrees 
very well with the theoretical at all combinations of positive yaw 
angles and angles of attack.   However, at negative yaw angles the 
boundary layer thickens considerably on the fuselage and tends to 
separate from the fuselage at an angle of attack of 11.0 deg. 

(fiaoiaai)   The measured boundary-layer thickness on the wing 
surface shows close agreement with the theoretical at all yaw angles 
and all angles of attack except 0. 2 deg where the measured value is 
thicker than the calculated. 

(Swmfc)   After the initial run the boundary-layer rakes were re- 
moved and the fuselage gutter height was adjusted to 1. 03 in.    The 
wing gutter height was not changed from the initial height of 0. 25 in. 

4.2  INITIAL BOUNDARY-LAYER CONTROL DEVELOPMENT 

(2R?Ä*#)   Three porous-wall configurations (Jl, J3,  and J4) 
and one solid-wall configuration (J2) were initially tested to select a 
porous-wall configuration.   The throat height was set at 102, 104, 106, 
110,  and 116 percent of the unstart throat height (percent T-L).    For 

oecussmro/UNCLASSIFIED 
4 



AEDC-TR-67-213 

DECLASSIFIED / UNCLASSIFIED     : 

each of the throat height settings,  the primary duct flow plugs were 
throttled to set the maximum engine-face total-pressure recovery 
which occurs just prior to an inlet unstart.    The variation of t-he-aver- 
age engine-face peak total-pressure recovery as a function of the throat 
height is shown in Fig.  12 for the inlet with solid-plate surfaces and 
with selected porous-plate surfaces,  bleed patterns J2 and J4,  respec- 
tively.    At the test conditions shown (M,,, = 2. 20,   a = 4. 0 deg,   and 
<l> = 0 deg), the maximum pressure recovery is essentially constant for 
throat heights from 104 percent T-L to 110 percent T-L for the porous- 
plate configurations,  whereas the total-pressure recovery for the solid- 
plate configuration is a maximum at 102 percent T-L and decreases* with 
increasing throat height. 

(^S«T?ret}   The variation of average engine-face total-pressure re- 
covery and distortion as functions of total engine-mass-flow ratio is 
shown in Fig.   13.    The data shown are for throat height settings cor- 
responding to the 102 percent T-L and 110 percent T-L as noted above. 
For the solid-plate configuration 2 (no boundary-layer bleed flow), the 
maximum total-pressure recovery attainable was 0. 713.    Opening the 
flow plug (increasing corrected airflow) had the effect of moving*the' 
duct shock downstream in the diffuser while maintaining an essentially 
constant mass-flow ratio.    As seen in Fig.   13, the total mass-flow ratio 
obtained with the solid-plate configuration agrees well with the theo- 
retical predicted value of 1. 055 from Ref.   3. 

(&mmm&   With the porous-plate configuration 6,   a variation of ap- 
proximately 5.0 percent in mass-flow ratio was obtained as the duct 
shock moved downstream in the diffuser.    When the shock reached the 
solid surfaces (past the influence of the porous plates),  the pressure 
recovery decreased rapidly,  and further variation in the primary plug 
position had no significant effect on mass-flow ratio.    The maximum 
average engine face total-pressure recovery was 0.912 at a mass-flow 
ratio of 0. 906 and decreased as the duct shock moved downstream 
through the region of the porous plates.    At peak total-pressure re- 
covery the maximum bleed-mass-flow ratio was approximately 0. 15. 

flÄW^ii   The minimum value of engine-face total-pressure dis- 
tortion for the solid-plate configuration was 0. 22, which occurred at 
the outboard engine-face location, whereas the distortion for the'pörous - 
plate configuration at a mass-flow ratio of 0. 915 was 0. 052 and 0. 040 at 
the inboard and outboard engine-face locations,  respectively. 
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4.3 SUBSONIC DIFFUSER SELECTION 

ffnunnt}   Four subsonic diffuser configurations were tested with 
the J4 boundary-layer bleed pattern selected above in order to deter- 
mine the diffuser with the best pressure recovery and distortion char- 
acteristics.    These subsonic diffusers had different diffusion rates 
and different local angles.    The inboard and outboard wall lines and 
area distribution are shown in Figs.  9 and 14 versus model station, 
respectively. 

(#WW>)   The variation of average engine-face total-pressure 
recovery as a function of the throat height is shown in Fig.   15 for the 
inlet with subsonic diffusers A and D.   Only performance on configu- 
rations A and D are shown since they exhibited the best performance 
characteristics of the four tested.    For throat heights of 104 percent 
T-L to 110 T-L,  subsonic diffuser D showed at least 0. 25 percent 
improvement in total-pressure recovery over diffuser A for the range 
of throat height tested. 

The variation of engine-face total-pressure recovery 
and engine-face distortion (inboard and outboard) as functions of total 
engine mass-flow ratio are shown in Fig.  16 for the throat height 
(110 percent T-L) that provided the highest peak recovery.   Dif- 
fuser D at peak recovery showed approximately a 0. 5-percent increase 
in total-pressure recovery over diffuser A,  and the difference in- 
creased at the higher mass-flow ratios.    Diffuser D showed a-lower 
distortion than A at the higher mass-flow ratios for both inboard and 
outboard engines. 

(6afi£«U  Subsonic diffuser D was selected as the primary subsonic 
diffuser for further studies; it showed the best average engine-face 
total-pressure recovery and in general showed less difference in dis- 
tortion between the inboard and outboard stations than the other con- 
figurations. 

4.4 PERFORMANCE IMPROVEMENT 

t)   Diffuser D was selected (Section 4. 3) for continued test- 
ing to improve the inlet performance characteristics.   Various 
porosity patterns for boundary-layer control (Fig.  3a) and vortex gener- 
ators added to the interior surfaces of the duct at various locations on 
the ramp and cowl (Fig.   17) were tested.    A list of the various items of 
model geometry comprising each configuration is included in Table I. 
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The effect of vortex generator location in the duct on inlet 
performance is shown in Fig.   18.    Maximum average engine-face total- 
pressure recovery is approximately equal for the three locations 
tested.    The greatest margin in mass-flow ratio (from the condition of 
maximum recovery to the engine requirement) occurs for the -middle 
and forward positions, with the forward position exhibiting slightly less 
engine-face distortion. 

flöewre*)   Variation of the average engine-face total-pressure re- 
covery as a function of throat height is shown in Fig.   19 for configu- 
rations 7,   14,  and 19,  for M^ = 2. 20, a = 4.0 deg,   and ty = 0 deg.    The 
maximum total-pressure recovery for these configurations occurred 
for a band of throat heights from 1Ö2 to 110 percent of the unstart throat 
height.    Comparison of the results for configurations 7 and 14 shows 
that porous bleed improved recovery.    Little or no additional recovery 
was obtained through the addition of forward vortex generators (configu- 
ration 19). **    "* 

The variations of average engine-face total-pressure 
recovery and of engine-face total-pressure distortion as a function of the 
total engine mass-flow ratio for configurations 7,   14,  and 19 are shown 
in Fig.  20.    The improvement in the maximum pressure recovery 
(approximately 0. 8 percent) of configuration 14 over that of configura- 
tion 7 is apparently due to the effect of the change in the boundary-layer 
control bleed pattern (percent porosity) between J8 and J4.   A compari- 
son of the bleed arrangement and percent porosity of the two configura- 
tions can be seen in Fig.  3. 

^ffS^^rt)   The vortex generators installed in the forward position 
(configuration 19) caused a one-percent decrease in engine-face 
average total-pressure recovery along the engine operating line com- 
pared to configuration 14 with no vortex generators.   As a result of the 
addition of the vortex generators, the engines experienced an apparent 
one-percent decrease in distortion at the inboard engine and a two- 
percent decrease at the outboard engine. 

4.5  EFFECT OF MACH NUMBER ON INLET PERFORMANCE 

fl3£C5WW   Configurations 22 and 27,  with subsonic diffuser D, bleed 
pattern J8,  and vortex generator V5, were selected for a Mach- 
number performance evaluation.   Inlet performance characteristics are 
presented in the form of compressor-face total-pressure recovery and 
total-pressure distortion for each simulated engine compressor*lace as 
a function of single engine mass-flow ratio.    The performance data at 
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transonic Mach numbers are presented for a throat height ofv3.-ll in.; 
at the higher Mach numbers (2. 00 and 2. 20),  the data are presented 
for a throat height of 110 percent T-L. 

(#CC*et)   The effect of Mach number on the air-induction system 
performance measured at each of the simulated engine compressor 
faces is presented in Fig.  21.    The total-pressure distortion for the 
inboard engine is generally higher than that for the outboard engine, 
particularly at the higher mass-flow ratios.    Also,  the inboard engine 
generally had a lower total-pressure recovery than the outboard 
engine in the transonic Mach range.   This was expected because less 
flow turning was required for the outboard engine than for the inboard 
engine.    The inboard engine-simulator metering duct apparently did not 
have sufficient pressure ratio to obtain the desired airflows at M,,, = 0.6, 
as shown in Fig. 21a. 

(Deii'Vl)  It was observed that the mass-flow ratio at which inlet 
instability (buzz) occurred increased with increasing Mach number. 

4.6  EFFECT OF ANGLE OF ATTACK ON INLET PERFORMANCE 

(Smmmmt)   To define the effect of model angle of attack on inlet per- 
formance,  data were recorded at various angles of attack from 0. 2 
to 13.0 deg. 

(Unclassified)   Because the angle-of-attack effect .was not con- 
sistent over the Mach number range tested, the inlet performance is 
discussed according to operation at low, medium, and high Mach'num- 
bers.   Inlet performance characteristics are presented in Fig.  22 to 
show the effect of model angle of attack on engine-compressor-face 
total-pressure recovery and total-pressure distortion as a function of 
the total engine mass-flow ratio. 

4.6.1   Mach Number - 0.60 and 0.95 (Low Range) 

I)  In Fig.  22a the effect of angle of attack on inlet perform- 
ance is negligible from a = 0. 2 to 4. 0 deg for the Mach number of 0.60, 
at mass-flow ratios less than 0. 80.   At a = 13 deg an additional two- 
percent loss in recovery occurred at the high mass-flow ratios'C*-"As 
the mass-flow ratio was increased above 0. 80, there was a rapid 
decrease in total-pressure recovery and an increase in distortion. 

(19Wr^t)   The most notable evidence of the effect of angle of 
attack on distortion was that the inboard engine exhibited consistently 
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higher distortion than the outboard engine over the entire range of mass- 
flow ratios. 

(B&HB^)   The effect of model angle of attack on inlet performance 
at the Mach number of 0. 95 is shown in Fig.  22b.    These data also 
show that the distortion for the inboard engine was greater than that 
for the outboard engine,  but the difference does not appear to be as 
great, in the range of mass-flow ratios corresponding to the engine 
requirement,  as was found for the performance at a Mach number 
of 0.60. 

4.6.2  Mach Number = 1.50 (Medium Range) 

Owoiait)   Figure 22c shows a definite increase in engine-face 
total-pressure recovery as the angle of attack was increased frorn^ 
0. 2 to 13. 0 deg over a wide range of mass-flow ratios.    At a mass- 
flow ratio 0. 76,  corresponding to the engine requirement (Ref.  3), the 
gain in total-pressure recovery,  as angle of attack was increased from 
0. 2 to 13. 0 deg,  was approximately 1. 0 percent. 

(WPCfftt)   The effect of angle of attack on the pressure distortion 
at a mass-flow ratio about 0. 76 did not appear to be direct function 
of angle of attack.    The tendency for the inboard engine to consistently 
exhibit higher values of distortion than the outboard engine (as noted 
previously in the low Mach number range) was not evident,  except at 
conditions of o = 8.0 deg. 

4.6-3   Mach Number = 2.00 and 2.20 (High Range) 

(Swrt1^   Maximum engine-face total-pressure recoveries of 0.93 0 
and 0. 925 were obtained at a = 4. 0 deg at Mach numbers 2. OO^and 2. 20 
(Figs.  22d and e,  respectively).   At airflows corresponding to the 
referenced engine requirements, the recoveries were about one and 
two percent lower at the respective Mach numbers and the distortions 
were essentially equal at 0. 045 for the inboard engine. ■- ... 

(Sewwt)   Distortion was generally greater for the inboard engine 
than for the outboard engine for a = 0. 2 and 4. 0 deg for both Mach 
numbers at mass-flow ratios up to about 0. 85.   At the high angles of 
attack of 8. 0 and 11. 0 deg,  this relationship was reversed. 

4.7 EFFECT OF YAW ANGLE ON INLET PERFORMANCE 

(Swrtft)   The configuration selected for the performance evalua- 
tion   [ diffuser 12 (D), boundary-layer bleed J 8, and VG pattern V5] 
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was tested at various yaw angles from. -5. 0 to 5. 0 deg.   Inlet perform- 
ance characteristics are presented in Fig.   23 to show the effect of 
yaw angle on engine-compressor-face total-pressure recovery and 
distortion as a function of total engine mass-flow ratio at 4. O'-tTeg' " 
angle of attack. 

(OlL-PLl)   The data at the low Mach numbers (0. 60 and 0. 95), 
Figs. 23a and b,  show that the effect of positive yaw on inlet perform- 
ance was negligible.    However, yawing the model -5. 0 deg produced a 
total-pressure recovery loss up to two percent,  and the engine-face 
pressure distortion increased a corresponding amount at Mach num- 
ber 0.60.   Little effect of yaw on total-pressure distortion was indi- 
cated at Mach number 0. 95. 

(Shwwrt)   The data for the medium Mach number (1. 50),  Fig. 23c, 
show that the engine-face total-pressure recovery increased slightly 
as yaw angle was increased from zero to 5. 0 deg.   A decrease 
in engine-face total-pressure recovery up to three percent is shown 
for the negative yaw angles.    The minimum engine-face total-pressure 
distortion occurred at 2. 5-deg yaw and the maximum occurred at 
-5.0 deg. 

(SteW^fc)   Inlet performance was directly affected by yaw angle at 
the high Mach numbers (2. 00 and 2. 20) as shown in Figs.  23d and e. 
Generally,  an increase in average inlet total-pressure recovery and 
mass-flow ratio was shown as yaw angle was increased from -5. 0 to 
5. 0 deg.   Engine-face total-pressure distortion showed little effect 
from yaw angle from zero to 5. 0 deg; however,  at negative yaw angles 
the distortion doubled. 

. ■ -, ..-,.■> 

(Se^flWf   At a Mach number of 2. 00 the use of a bypass system 
would be required at all yaw angles except zero and -2. 5 deg to match 
the engine reference airflows. 

{DmuiLt)   At a Mach number of 2. 20 (Fig.  23e) engine-face total- 
pressure recovery showed a direct increase with increasing angle 
of yaw from -2.5 to 5.0 deg.   The maximum recovery and minimum 
distortion were obtained at 5. 0-deg yaw.    Yawing the model 5. 0 deg in- 
creased engine-face pressure recovery four percent at the engine refer- 
ence airflow.    The effect of yaw angle on total-pressure distortion was 
small except for -5. 0 deg, where the fuselage tended to block the flow 
to the inlet and thus resulted in an increase in distortion and reduced 
recovery.    This blockage of flow from the inlet at -5.0 deg yaw was 
seen in the boundary-layer data discussed in Section 4.1 {Fig-,  11).> 
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(Sw«i»et)   For all Mach numbers,  distortion was greater for the 

inboard engine than for the outboard engine at negative yaw angles or 
for the high supercritical conditions.   Also for all Mach numbers, the 
cj.oss in total-pressure recovery and increase in total-pressure dis- 
tortion for negative yaw angles was greater than the gain at positive 
yaw angles. 

4.8   EFFECT OF THROAT HEIGHT ON INLET PERFORMANCE 

(t&mmmt.)   The peak engine-face total-pressure recovery as a func- 
tion of throat height in percent T-L for the selected configuration 19 
is presented in Fig.  24.    These data show that the total-pressure 
recovery between 104 percent T-L and 110 percent T-L. was less sensi- 
tive to throat height.   Above or below these values the total-pressure 
recovery made a significant drop.    Figure 25 presents performance 
data for two throat heights at Mm = 2. 20 and two throat heights at 
M0 = 1. 75.    At M,,, = 2.20 for the engine match-line,  the total-pressure 
recovery was higher and the total-pressure distortion was lower for 
the 110 percent T-L compared to the 104 percent T-L throat height. 
The lower limit for started inlet operation at each throat height oc- 
curred at the minimum mass-flow ratio for each of the performance 
curves shown.    As throat height was increased the minimum mass-flow 
ratio required to maintain a started inlet increased.    At M,,, = 1. 75 
(Fig.  25b) the average total-pressure recovery was relatively insensi- 
tive to the throat-height settings investigated.    However,  below a mass- 
flow ratio of 0. 825 the small throat height gave the lowest distortion for 
both inboard and outboard engines.    Therefore,  distortion would be the 
factor in determining the throat height at M^ = 1. 75.    For the Mach num- 
bers below 1. 75 a throat height of 3. 11 in. was maintained.   At this 
throat height the first and second ramps were aligned. ,.-«.;. - „ 

4.9 EFFECT OF BYPASS ON PERFORMANCE 

(igtefffi)   The NAA AMSA vehicle will use the variable bypass 
system to minimize spillage drag around the cowl lip, to optimize., 
inlet engine airflow matching,  and to position the internal terminal 
shock for optimum inlet performance.   Sketches of the three bypass 
configurations tested are shown in Fig.  4.    Bypass configuration Ul had 
a controlled exit door on the top diffuser wall and configurations U2 
and U3 had porous diffuser walls. «*•—*-. - 

(Swe»st)   Performance data for three bypass configurations are 
presented in Fig.   26 to show the effect of increasing bypass flow. 
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The inlet perTormance is also shown with no bypass for comparison 
purposes and to indicate the amount of bypass leakage with the bypass 
door or plug in the closed position.    Opening the bypass door (Fig. 26a) 
had very little effect at door angles up to 15 deg.    However,  as the door 
angle was increased beyond 15 deg the effectiveness of bypass flow in- 
creased. 

CSWreW   Figures 26b and c show the effect of opening the bypass 
plug (increasing bypass flow) for the porous diffuser configurations. 
The performances of both configurations were quite similar.    How- 
ever,  bypass configuration U3 had slightly higher recovery arrcKLower 
distortion than either of the other two bypass configurations.    The 
porous diffuser configurations provided more mass-flow-ratio control 
than those with the bypass door.    The control of mass flow was essen- 
tially linear with plug position. 

SECTION V 
CONCLUSIONS 

Oue!LC*)   The test results of a 0. 10-scale AMSA inlet model 
tested through the Mach number range of 0. 60 to 2. 20 and at angles 
of attack and yaw from 0. 2 to 13. 0 deg and -5. 0 to 5. 0 deg, respec- 
tively, indicate that: 

(AeeMt)   1.   Approximately a 20-percent increase in average 
total-pressure recovery and a larger decrease in distortion was 
obtained with the addition of the best boundary-layer control 
configuration. 

(äaasat)   2.    The total-pressure distortion for the inboard engine 
was generally higher than that of the outboard engine, particularly 
at the higher mass-flow ratios. 

3.   As throat height was increased,  an increase in mass- 
flow ratio was required to maintain a started inlet. «^^ 

(Smumt)   4.    Both total-pressure recovery and distortion were 
affected by throat height changes at M^ = 2. 20.    However,  at 
M,,, = 1.75, distortion was the primary factor affected by throat 
height. 

5.    Bypass configuration U3 had slightly higher recovery 
and lower distortion than either of the other two configurations 
tested. 
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(3u.ui.Ll)   6.    Both porous-bypass configurations had more bypass 
mass-flow-ratio control than did the bypass-door configurations. 

(StWi «4)   7.    Buzz-free inlet operation for normal inlet geometries 
was obtained throughout the test range. 

(S«tMi)   8.    The addition of vortex generators reduced distortion 
up to two percent, particularly for the outboard engine. 
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APPENDIXES 

I.  ILLUSTRATIONS 
II.   TABLE 

III.  THE INFLUENCE OF THE MODEL SUPPORT STRUCTURE 
ON THE FLOW ANGULARITY AND LOCAL MACH NUMBER 
AT TRANSONIC MACH NUMBERS 
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Fig. 1   (Unclassified) Model Location in the Test Section 
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Fig. 2   (Unclassified) Model Installation 
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REGION OF RAMP BLEEDS 

MOVEABLE RAMPS ( SHOWN IN 
INTERMEDIATE   POSITION) 

COWL BLEEDS 
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(UPPER SIDEPLATE REMOVED FOR CLARITY) 
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a.   Porous Plate Locations and Percent Porosity 

Fig. 3   (Unclassified) Boundary-Layer Control Configurations 
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b.   Boundary-Layer Gutters and Porous Plate Installation on Ramp and Upper Sideplate 

Fig. 3   Concluded 
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Fig. 5   (Unclassified) Fuselage and Wing Boundary-Layer Rakes 
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Fig. 6   (Unclassified) Photograph of Inlet Boundary-Layer Rakes 
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APPENDIX III 

THE INFLUENCE OF THE MODEL SUPPORT STRUCTURE ON THE FLOW 
ANGULARITY AND LOCAL MACH NUMBER AT TRANSONIC MACH NUMBERS 

(Unclassified)   An investigation was conducted in Tunnel 16T to 
determine the influence of the model support structure on the flow 
angularity and local Mach number in the model inlet flow field.    The 
model was removed from the support for this study to test the effect 
of the support alone (Fig. III-l).    A hemispherical differential pres- 
sure yawmeter probe was mounted on the support such that the flow 
conditions at the model inlet location were determined.    The yawmeter 
probe was also equipped with a pitot orifice and with static orifices for 
determining local Mach number.    The model support was found to exert 
a strong influence on the flow angularity and local Mach number at high 
subsonic and low transonic speeds.    A summary of the flow angularity 
and Mach number effects is shown in Table III-l.    The values for Aa 
and Ai// include the tunnel flow misalignment as well as the interference 
effects caused by the model support structure. 

■     * • 

Fig. III-l   Hemispherical Yawmeter on Model Support Structure 
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